If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2p^2-6p+1=0
a = -2; b = -6; c = +1;
Δ = b2-4ac
Δ = -62-4·(-2)·1
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{11}}{2*-2}=\frac{6-2\sqrt{11}}{-4} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{11}}{2*-2}=\frac{6+2\sqrt{11}}{-4} $
| 8x=5x+x+14 | | 190+x=50*5 | | 6x-12=3x-12+78 | | 190+x=50(5) | | x-5/12=3/4 | | -21+3x-2=8 | | -3x^2+33x-80=0 | | -21+4x-2=8 | | 5n^2+7n+6=12 | | x-4.5=3.44 | | 5^x-0.8=0 | | C=10+2n | | (6/x+6)-(3/x-4)=3/x^2+2x-24 | | 7x+3=13(×-3) | | 10b-13=67 | | 2x+13+4x+20=27 | | 12x^2+7=-x | | 64=4^4x | | 4/5x-6/10=10 | | 9x/2-2=34 | | -4-7=8-9x | | -4w+9=5 | | 16x-18=4+5x | | 3b^2-20=7b | | x^2-x-0.072=0 | | x/5-5=x/15+4 | | 5(x+1)=5x+8+4x | | 3z^2-3z=0 | | 6x^2-12x-9=28 | | 6x-4=6-x | | 2x-6=104 | | b÷5=0.5 |